Конспект НОД по ФЭМП «Решение арифметических задач» в подготовительной группе


Первые шаги в математику. конспект нод в подготовительной группе – ребенок в детском саду

Конспект НОД в подготовительной группе составлен воспитателей Сорокиной Ольгой Анатольевной, МАДОУ Центр развития ребенка — детский сад № 41 «Росинка», г. Нижневартовск.

Конспект НОД в подготовительной группе задействуют относится к разделу «Первые шаги в математику».

Задачи НОД:

  • Продолжать учить составлять арифметические задачи и записывать их решение с помощью цифр.
  • Закрепить знания детей о геометрических фигурах.
  • Продолжать формировать у детей представления о днях недели, месяцах и числах.
  • Закрепить умение ориентироваться на листе бумаги в клетку.
  • Закрепить умение различать пространственные представления: слева, справа, посередине, вверху, внизу, за, перед.

Развивающие задачи:

  • Создать условия для развития логического мышления, сообразительности, внимания.
  • Развивать смекалку, зрительную память, воображение.
  • Способствовать формированию мыслительных операций, развитию речи, умение аргументировать свои высказывания.

Тема 6. Обучение решению арифметических задач

ТЕМА 6.

ОБУЧЕНИЕ РЕШЕНИЮ АРИФМЕТИЧЕСКИХ ЗАДАЧ

План

1. Роль арифметической задачи в понимании сущности арифметического действия

2. Особенности понимания старшими дошкольниками арифметической задачи

3. Виды арифметических задач, используемые в работе с дошкольниками

4. Последовательные этапы и методические приемы в обучении решению арифметических задач

Роль арифметической задачи в понимании
сущности арифметического действия
В процессе математического и общего умственного развития детей старшего дошкольного возраста существенное место занимает обучение их решению и составлению простых арифметических задач.

В детском саду проводится подготовительная работа по форми­рованию у детей уверенных навыков вычислений при сложения и вычитании однозначных чисел и быстрых устных вычислений с двузначными числами с целью подготовки их к обучению в начальной школе.

Если в школе обучение вычислениям ведется при решении примеров и арифметических задач, то в практике работы дошкольных учреждений принято знакомить детей с арифметическими действиями и простейшими приемами вычисления на основе простых задач, в условии которых отражаются реальные, в основном игровые и бытовые ситуации.

Каждая арифметическая задача вклю­чает

числа данные и искомые. Числа в задаче (имеются в виду только задачи, используемые в обучении дошкольников) характеризуют количество конкретных групп предметов или значения величин.

В структуру задачи входят

условие и вопрос. В условии задачи указываются связи между данными числами, а также между дан­ными и искомыми. Эти связи и определяют выбор арифметического действия.

Установив эти связи, ребенок довольно легко приходит к пони­манию смысла арифметических действий и значения понятий «при­бавить», «вычесть», «получится», «останется». Решая задачи, дети овладевают умением находить зависимость величин.

Вместе с тем задачи являются одним из средств развития у детей логического мышления, смекалки, сообразительности. В работе с задачами совершенствуются умения проводить анализ и синтез, обобщать и конкретизировать, раскрывать основное, выделять глав­ное в тексте задачи и отбрасывать несущественное, второстепен­ное.

Полностью соответствовать своей роли текстовые задачи могут лишь при правильной организации методики обучения детей решению задач. Основные требования методики обучения детей решению задач будут более понятными, если рассмотреть особенности понимания старшими дошкольниками арифметической задачи.

Особенности понимания старшими дошкольниками арифметической задачи

В работах известных педагогов (, 1955 г., , 1976 г. и др.) было показано, что большинство детей воспринимают содержание задачи как обычный рассказ или загадку, не осознают структуру задачи (условие и вопрос), а поэтому не придают значения тем числовым данным, о которых говорится в условии задачи, не понимая и смысла вопроса.

Незнание детьми простейшей структуры задачи вызывает серьез­ные затруднения при составлении ее текста. Если первая часть задачи, т. е. числовые данные, осознается быстрее, то постанов­ка вопроса, как правило, вызывает у ребенка серьезные трудности.

Вопрос очень часто заменяется ответом, например: «В вазе стояло три цветка. Один цветок завял, и осталось два цветка». Даже к концу пребывания в подготовительной группе дети затрудняются составить текст задачи по картинкам.

Типичные ошибки детей:

1. Вместо задачи составляется рассказ: «На листе сидят две гусеницы, а на траве еще одна. Они все поедают».

2. В задаче правильно воспринимается вопрос, но отсутствует фиксация числовых данных: «Шла девочка и уронила флажок. Сколько стало флажков?»

3. Вопрос заменяется ответом-решением: «Девочка держала флажки в руках. В этой два и в этой два. Если сложить, полу­чится четыре».

Довольно часто дети отказываются составлять задачу по кар­тинке, т. к. «мы такие не решали».

Их ошибки при состав­лении задач

по картинкам позволяют сделать следующий вывод:

1. Самостоятельное составление задачи даже при наличии наглядного материала является более трудной деятельностью, чем нахождение ответа при решении готовых задач;

2. Дети усваивают структуру задачи отрывочно, не полностью, поэтому не все ее компоненты присутствуют в составленных ими задачах; воспитатели мало исполь­зуют разнообразный наглядный материал при обучении составлению задач.

Как же справляются дошкольники с решением задач?

выясняла

· понимают ли дети конкретный смысл арифметического действия (сложения или вычитания)

· понимают ли дети связи между компонентами и результатом этих действий

· умеют ли выделять в задаче известное и неизвестное, а в связи с этим выбирать то или иное арифметическое действие

· понимают ли дети связи между действиями сложения и вычитания.

Ею установлено, что большинство дошкольни­ков

· не владеют необходимым объемом знаний об арифметических действиях сложения и вычитания, так как они понимают связь между практическими действиями с совокупностями и соответствующими арифметическими действиями в основном на основе ассоциации арифметического действия с жизненным дей­ствием (прибавили — прибежали, отняли — улетели и др.)

· они не осознают еще математических связей между компонентами и резуль­татом того или иного действия, так как не научились анализировать задачу, выделяя в ней известные и неизвестное

· даже в тех случаях, когда дети формулировали арифметиче­ское действие, было ясно, что они механически усвоили схему формулировки действия, не вникнув в его суть, т. е. не осозна­ли отношений между компонентами арифметического действия как единства отношений целого и его частей, поэтому и решали за­дачу привычным способом счета, не прибегая к рассуждению о связях и отношениях между компонентами.

По-другому относятся к решению задач те дети, которые предварительно упражнялись в выполнении различных операций над множествами (объединение, выделение правильной части множества, дополнение, пересечение). Они понимают отношения между частью и целым, а поэтому ос­мысленно подходят к выбору арифметического действия при реше­нии задач.

Виды арифметических задач, используемые в работе с дошкольниками

Простые задачи, т. е. задачи, решаемые одним действием (сло­жением или вычитанием), принято делить на следующие группы.

К первой группе относятся простые задачи, при решении которых дети усваивают конкретный смысл каждого из арифме­тических действий, т. е. какое арифметическое действие соответ­ствует той или иной операции над множествами (сложение или вычитание). Это задачи на нахождение суммы двух чисел и на нахождение остатка.

Ко второй группе относятся простые задачи, при решении которых надо осмыслить связь между компонентами и результатами арифметических действии. Это задачи на нахождение неизвестных компонентов:

а) нахождение первого слагаемого по известным сумме и вто­рому слагаемому («Нина вылепила из пластилина несколько гриб­ков и мишку, а всего она вылепила 8 фигур. Сколько грибков вылепила Нина?»);

б) нахождение второго слагаемого по известным сумме и перво­му слагаемому («Витя вылепил 1 мишку и несколько зайчиков. Всего он вылепил 7 фигур. Сколько зайчиков вылепил Витя?»);

в) нахождение уменьшаемого по известным вычитаемому и раз­ности («Дети сделали на елку несколько гирлянд. Одну из них уже повесили на елку, у них осталось 3 гирлянды. Сколько всего гирлянд сделали дети?»);

г) нахождение вычитаемого по известным уменьшаемому и разности («Дети, сделали 8 гирлянд на елку. Когда они повесили на елку несколько гирлянд, у них осталась одна гирлянда. Сколь­ко гирлянд повесили на елку?»).

К третьей группе относятся простые задачи, связанные с понятием разностных отношений:

а) увеличение числа на несколько единиц («Леша вылепил 6 морковок, а Костя на одну больше. Сколько морковок вылепил Костя?»);

б) уменьшение числа на несколько единиц («Маша вымыла 4 чашки, а Таня на одну чашку меньше. Сколько чашек вымыла Таня?»).

Имеются и другие разновидности простых задач, в которых раскрывается новый смысл арифметических действий, но с ними, как правило, дошкольников не знакомят, поскольку в детском саду достаточно подвести детей к элементарному пониманию отноше­ний между компонентами и результатами арифметических дейст­вий — сложения и вычитания.

В зависимости от используемого для составления задач нагляд­ного материала они подразделяются на

· задачи-драматизации

· задачи-иллюстрации

Каждая разновидность этих задач обладает своими особенностями и раскрывает перед детьми те или иные стороны (роль тематики, сюжета, характера отношений между число­выми данными и др.), а также способствует развитию умения отби­рать для сюжета задачи необходимый жизненный, бытовой, игро­вой материал, учит логически мыслить.

Особенность задач-драматизаций

состоит в том, что содержание их непосредственно отражает жизнь самих детей, т. е. то, что они только что делали или обычно делают.

В задачах-драматизациях наиболее наглядно раскрывается их смысл. Дети начинают понимать, что в задаче всегда отражается конкретная жизнь людей. Умение вдумываться в соответствие содержания задачи реаль­ной жизни способствует более глубокому познанию жизни, учит детей рассматривать явления в многообразных связях, включая количественные отношения.

Задачи этого вида особенно ценны на первом этапе обучения: дети учатся составлять задачи про самих себя, рассказывать о дей­ствиях друг друга, ставить вопрос для решения, поэтому струк­тура задачи на примере задач-драматизаций наиболее доступна детям.

Особое место в системе наглядных пособий занимают задачи-иллюстрации

. Если в задачах-драматизациях все предопределено, то в задачах-иллюстрациях при помощи игрушек создается про­стор для разнообразия сюжетной, для игры воображения (в них ограничиваются лишь тематика и числовые данные). Например, на столе слева стоят пять самолетов, а справа — один. Содержа­ние задачи и ее условие может варьироваться, отражая знания детей об окружающей жизни, их опыт. Эти задачи развивают воображение, стимулируют, память и умение самостоятельно при­думывать задачи, а, следовательно, подводят к решению и составле­нию устных задач.

Для иллюстрации задач широко применяются различные кар­тинки. Основные требования к ним: простота сюжета, динамизм содержания и ярко выраженные количественные отношения между объектами. Такие картинки готовятся заранее, некоторые из них издаются. На одних из них все предопределено: и тема, и содержа­ние, и числовые данные. Например, на картине нарисованы три легковых и одна грузовая машина. С этими данными можно соста­вить 1-2 варианта задач.

Но задачи-картинки

могут иметь и более динамичный харак­тер. Например, дается картина-панно с фоном озера и берега; на берегу нарисован лес. На изображении озера, берега и леса сделаны надрезы, в которые можно вставить небольшие контур­ные изображения разных предметов. К картине прилагаются на­боры таких предметов, по 10 штук каждого вида: утки, грибы, зайцы, птицы и т. д. Таким образом, тематика и здесь предопре­делена, но числовые данные и содержание задачи можно в изве­стной степени варьировать (утки плавают, выходят на берег и др.) так же, как создавать различные варианты задач о грибах, зайцах, птицах.

Сделать задачу-картинку может и сам воспитатель. Например, по рисунку вазы с пятью яблоками и одним яблоком на столе около вазы дети могут составить задачи на сложение и вычита­ние.

Указанные наглядные пособия способствуют усвоению смысла арифметической задачи и ее структуры.

Последовательные этапы и методические приемы в обучении решению арифметических задач

Обучение дошкольников решению задач проходит через ряд взаимосвязанных между собой этапов.

Первый этап — подготовительный.

Основная цель этого эта­па

— организовать систему упражнений по выполнению операций над множествами.

Подготовкой к решению задач на сложе­ние являются упражнения по объединению множеств. Упражнения на выделение части множества проводятся для подготовки детей к решению задач на вычитание. С помощью операций над множе­ствами раскрывается отношение «часть — целое», доводится до по­нимания смысл выражений «больше на…», «меньше на…».

Учитывая наглядно-действенный и наглядно-образный характер мышления детей, следует оперировать такими множествами, элементами которых являются конкретные предметы. Воспитатель пред­лагает детям отсчитать и положить на карточку шесть грибов, а затем добавить еще два гриба. «Сколько всего стало грибов? (Де­ти считают). Почему их стало восемь? К шести грибам прибавили два (показывает на предметах) и получили восемь. На сколько стало больше грибов?»

Детей учат устанавливать связи между данными и искомым и на этой основе выбирать для решения необходимое арифметическое действие. Подводить к пониманию структуры задачи лучше всего на задачах-драматизациях. Воспи­татель знакомит детей со словом задача

и при разборе состав­ленной задачи подчеркивает необходимость числовых данных и во­просов: «Что известно?», «Что нужно узнать?».

На этом этапе обучения составляются такие задачи, в которых вторым слагаемым или вычитаемым является число 1. Это важно учитывать, чтобы не затруднять детей поиском способов решения задачи. Прибавить или вычесть число 1 они могут на основе имею­щихся у них знаний об образовании последующего или предыдущего числа.

Например, воспитатель просит ребенка, принести и поставить в стакан семь флажков, а в другой — один флажок. Эти дейст­вия и будут содержанием задачи, которую составляет воспитатель. Текст задачи произносится так, чтобы было четко отделено условие, вопрос и числовые данные. Составленную задачу повторяют двое-трое детей. Воспитатель при этом должен следить, чтобы дети не забывали числовые данные, правильно формулировали вопрос.

При обучении дошкольников составлению задач важно показать, чем отличается задача от рассказа, загадки

, подчеркнуть значе­ние и характер вопроса.

Для усвоения значения и характера вопроса

в задаче можно применить такой прием: к условию задачи, составленной детьми, ставится вопрос не арифметического характера («С одной стороны стола поставили двух девочек, а с другой стороны одного мальчика.» «Как зовут этих детей?»). Дети замечают, что задача не получилась. Далее можно предложить им самим поставить такой вопрос, чтобы было понятно, что это задача. Следует выслушать разные варианты вопросов и отметить, что все они начинаются со слова
сколько.
Чтобы показать отличие задачи от рассказа

и подчеркнуть значение чисел и вопроса в задаче, воспитателю следует пред­ложить детям рассказ, похожий на задачу. В рассуждениях по содержанию рассказа отмечается, чем отличается рассказ от задачи.

Чтобы научить детей отличать задачу от загадки

, воспитатель подбирает такую загадку, где имеются числовые данные. Напри­мер: «Два кольца, два конца, а посередине гвоздик». «Что это?» — спрашивает воспитатель. «Это не задача, а загадка», — говорят дети. «Но ведь числа указаны», — возражает воспитатель. Однако ясно, что в этой загадке описываются ножницы и решать ничего не надо.

На следующем занятии, продолжая учить детей составлять за­дачи, нужно особо подчеркнуть необходимость числовых данных

. Например, воспитатель предлагает следующий текст задачи: «Лене я дала гусей и уток. Сколько птиц я дала Лене?» В обсуждении этого текста выясняется, что такой задачи решить нельзя, так как не указано, сколько было дано гусей и сколько — уток. Лена сама составляет задачу, предлагая детям решить ее: «Мария Петровна дала мне восемь уток и одного гуся. Сколько птиц дала мне Мария Петровна?» «Всего девять птиц», — говорят дети.

Чтобы убедить детей в необходимости наличия не менее двух чи­сел в задаче

, воспитатель намеренно опускает одно из числовых данных: «Сережа держал в руках четыре воздушных шарика, часть из них улетела. Сколько шариков осталось у Сережи?» Дети прихо­дят к выводу, что такую задачу решить невозможно, так как в ней не указано, сколько шариков улетело.

Воспитатель соглашается с ними, что в задаче не названо вто­рое число; в задаче всегда должно быть два числа. Задача повто­ряется в измененном виде. «Сережа держал в руках четыре шарика, один из них улетел. Сколько шариков осталось у Сережи?»

На конкретных примерах из жизни дети яснее осознают необхо­димость иметь два числа в условии задачи, лучше усваивают отно­шения между величинами, начинают различать известные данные в задаче и искомое неизвестное.

После таких упражнений можно подвести детей к обобщенному пониманию составных частей задачи.

Основными элементами задачи являются
условие и во­прос
. В условии в явном виде содержатся отношения между число­выми данными и неявном — между данными и искомым. Анализ условия подводит к пониманию известных и к поискам неизвест­ного. Этот поиск идет в процессе решения задачи. Детям надо объяснить, что решать задачу — это значит понять и рассказать, какие действия нужно выполнить над данными в ней числами, чтобы получить ответ.

Таким образом, структура задачи включает четыре компонента:

· условие

· вопрос

· решение

· ответ.

Выяснив струк­туру задачи, дети легко переходят к выделению в ней отдельных частей. Дошкольников следует поупражнять в повторении простей­шей задачи в целом и отдельных ее частей. Можно предложить одним детям повторить условие задачи, а другим поставить в этой задаче вопрос.

Формулируя вопрос

, дети, как правило, употреб­ляют слова
стало, осталось.
Следует показывать им, что формули­ровка вопроса в задачах на сложение может быть разной. Напри­мер: «На аэродроме стояло пять самолетов. Затем вернулся еще один». Ребенок ставит вопрос: «Сколько стало самолетов?» Педа­гог поясняет, что вместо слова
стало
лучше сказать
стоит,
ведь самолеты стоят на аэродроме. Таким образом, в вопросе следует употреблять глаголы, отражающие действия по содержанию задачи
(Прилетели, купили, выросли, гуляют, играют
и т. д.).

Когда дети научатся правильно формулировать вопрос, можно перейти к следующей задаче этого этапа

— научить анализировать задачи, устанавливать отношения между данными и искомым. На этой основе можно уже научиться формулировать и записывать ариф­метическое действие, пользуясь цифрами и знаками +, -, =.

Поскольку задача представляет собой единство целого и части, с этой позиции и следует подводить детей к ее анализу.

Приведем пример. Задача составляется на основе действий, выполняемых детьми: «Нина в одну вазу поставила пять флажков, а в другую — один флажок». Дети рассказывают, что сделала Нина и факти­чески уже знают, что описание действий Нины называется условием задачи. «Что же известно из задачи? — спрашивает воспитатель. (Пять флажков в одной вазе и один — в другой.) — А что неиз­вестно, что надо еще узнать? Сколько флажков поставила Нина в обе вазы? То, что неизвестно в задаче, — это вопрос задачи. (Дети повторяют вопрос в задаче.) О каких же числах известно в

задаче?» (О числе флажков в одной вазе — их пять и о числе флажков в другой вазе — один.) Предлагается цифрами изобра­зить эти данные на бумаге и на доске: «Что же требуется узнать? Сколько всего флажков в обеих вазах?»

Подобным образом дети анализируют задачу на вычитание. На основе практических действий ребят составляется содержание задачи. Например, дежурный Коля поставил вокруг стола шесть стульев, а дежурный Саша один стул убрал. Дети составляют условие задачи, ставят вопрос. Условие и вопрос повторяются раздельно.

Далее задача анализируется, выясняется, что известно из задачи (поставили шесть стульев, а затем один убрали) и что неизвестно (сколько стульев осталось у стола). Детям предлагается решить задачу и ответить на ее вопрос.

Обучающее значение приведенных выше задач на сложение и вычитание состоит не столько в том, чтобы получить ответ, а в том, чтобы научить анализировать задачу и в результате этого правильно выбрать нужное арифметическое действие.

Итак, на втором этапе работы над задачами дети должны:

а) научиться составлять задачи;

б) понимать их отличие от рассказа и загадки;

в) понимать структуру задачи;

г) уметь анализировать задачи, устанавливая отношения между данными и искомыми.

Задача третьего этапа — учить детей формулировать арифметические действия сложения и вычитания.

На предыдущей ступени дошкольники без затруднения находили ответ на вопрос задачи, опираясь на свои знания последовательности чисел, связей и отношений между ними. Теперь же нужно познакомить с арифметическими действиями сложения и вы­читания, раскрыть их смысл, научить формулировать их и «записы­вать» с помощью цифр и знаков в виде числового примера. («Запись» производится при помощи карточек с изображенными на них цифрами и знаками.)

Прежде всего детей надо научить формулировать действие нахож­дения суммы по двум слагаемым при составлении задачи по конкрет­ным данным

(пять рыбок слева и одна справа). «Мальчик поймал пять карасей и одного окуня», — говорит Саша. «Сколько рыбок поймал мальчик?» — формулирует вопрос Коля. Воспитатель пред­лагает детям ответить на вопрос. Выслушав ответы нескольких детей, он задает им новый вопрос: «Как вы узнали, что мальчик поймал шесть рыбок?» Дети отвечают, как правило, по-разному: «Увидели», «Сосчитали», «Мы знаем, что пять да один будет шесть» и т. п. Теперь можно перейти к рассуждениям: «Больше стало рыбок или меньше, когда мальчик поймал еще одну?» «Конечно, больше!» — отвечают дети. «Почему?» — «Потому что к пяти рыб­кам прибавили еще одну рыбку». Воспитатель поощряет этот ответ и формулирует арифметическое действие: «Дима правильно сказал, надо сложить два числа, названные в задаче. К пяти рыбкам прибавить одну рыбку. Это называется действием сложения. Теперь мы будем не только отвечать на вопрос задачи, но и объяснять, какое действие мы выполняем».

На основе предложенного наглядного материала составля­ются еще одна-две задачи, с помощью которых дети продолжают учиться формулировать действие сложения и давать ответ на вопрос.

На первых занятиях словесная формулировка арифметическо­го действия подкрепляется практическими действиями: «К трем красным кружкам прибавим один синий кружок и получим че­тыре кружка». Но постепенно арифметическое действие следует отвлекать от конкретного материала: «Какое число прибавили к какому?» Теперь уже при формулировке арифметического действия числа не именуются. Спешить с переходом к оперированию отвле­ченными числами не следует. Такие абстрактные понятия, как «число», «арифметическое действие», становятся доступными лишь на основе длительных упражнений детей с конкретным материалом.

Когда дети усвоят в основном формулировку действия сло­жения, переходят к обучению формулировке вычитания

. Работа проводится аналогично тому, как это описано выше.

При формулировке арифметического действия можно считать правильным, когда дети говорят отнять, прибавить, вычесть, сложить.

Слова
сложить, вычесть, полу­чится, равняется
являются специальными математическими терминами. Этим терми­нам соответствуют бытовые слова
прибавить, отнять, стало, будет.
Разумеется, бытовые слова ближе опыту ребенка и начинать обучение можно с них. Но желатель­но, чтобы воспитатель в своей речи пользовался математической терминологией, постепенно приучая и детей к употреблению этих слов. Например, ребенок говорит: «Нужно отнять из пяти яблок одно», а воспитатель должен уточнить: «Нужно из пяти яблок вычесть одно яблоко».

Упражняя детей в формулировке арифметического действия, полезно предлагать задачи с одинаковыми числовыми данными на разное действие. Например: «У Саши было три воздушных шара. Один шар улетел. Сколько шаров осталось?» или: «Коле подарили три книги и одну машину. Сколько подарков получил Коля?». Устанавливается, что это задачи на одно и то же действие. Важно при этом обращать внимание на правильную и полную формулировку ответа на вопрос задачи.

Можно показывать задачи и внешне похожие, но требующие выполнения разных арифметических действий. Например: «На де­реве сидели четыре птички, одна птичка улетела. Сколько птичек осталось на дереве?» или: «На дереве сидели четыре птички. Приле­тела еще одна. Сколько птичек сидит на дереве?» Хорошо, когда подобные задачи составляются одновременно и детьми.

На основе анализа данных задач, дети приходят к выводу, что хотя в обеих задачах речь идет об одинаковом количестве птичек, но они выполняют разные действия. В одной задаче одна птичка улетает, а в другой — прилетает, поэтому в одной задаче числа нужно сложить, а в другой — вычесть одно из другого. Вопросы в задачах различны, поэтому различны и арифметические действия, различны ответы.

Такое сопоставление задач, их анализ полезны детям, т. к. они лучше усваивают как содержание задач, так и смысл арифметического действия, обусловленного содержанием.

Динамика вопросов воспитателя к детям для фор­мулировки арифметического действия

1. На первых занятиях зада­ется развернутый вопрос, содержание которого близко к содер­жанию вопроса к задаче: «Что надо сделать, чтобы узнать, сколько птичек сидит на дереве?»

2. Затем вопрос формулируется в более общем виде: «Что надо сделать, чтобы решить эту задачу?» или: «Что надо сделать, чтобы ответить на вопрос задачи?»

Воспитатель не должен мириться с односложными ответами детей («отнять»,
«прибавить»
). Выполненное арифметическое действие должно быть сформулировано полно и правильно. Очень важно вовлекать всех детей в обдумывание наиболее точного ответа.

Поскольку к моменту обучения решению задач дети уже знакомы с цифрами и знаками +, -, =, следует упражнять их в записи арифметического действия и учить читать запись (3+ 1=4). (К трем птичкам прибавить одну птичку. Получится четыре птички.) Умение читать запись обеспечивает возможность составления задач по числовому примеру. Например, на доске запись: 10 — 1=? Воспитатель предлагает прочитать запись и сказать, что обозначает этот знак (?). Затем просит составить задачу, в которой заданы такие же числа, как на доске. Педагог следит при этом, чтобы содержание задач было разнообразным и интересным, чтобы в них правильно ставился вопрос. Для решения выбирается самая интересная задача. Кто-то из детей повторяет ее. Дети, выделяя данные и искомое в задаче, называют арифметическое действие, решают задачу и записывают решение у себя на бумаге. Кто-то из детей формулирует ответ задачи. Проведенная беседа приучает ребят логически мыслить, учит правильно строить ответы на постав­ленные вопросы — о теме, сюжете задачи, о числовых данных и их отношениях, обосновывать выбор арифметического действия.

Для упражнения детей в распознавании записей на сложение и вычитание воспитателю рекомендуется использовать несколько числовых примеров и предлагать детям их прочесть. По указан­ным примерам составляются задачи на разные арифметиче­ские действия, при этом детям предлагается сделать самостоя­тельно запись решенных задач, а затем прочесть ее. Обязательно нужно исправить ответы детей, допустивших ошибки в записи. Читая запись, дети скорее обнаруживают свою, ошибку.

Запись действий убеждает детей в том, что во всякой за­даче всегда имеются два числа, по которым надо найти третье — сумму или разность.

и рекомендуют другой способ записи арифметического действия. Авторы предложили знакомить детей с моделью, помогающей усвоить обобщенное понятие ариф­метического действия (сложения и вычитания) как отношения части и целого.

Эта модель записи арифметических действий способствует переходу от восприятия кон­кретных связей и отношений между частями и целым множеством к модели изображения связей и отношений арифметических дей­ствий с помощью условных и математических знаков. Модель запи­си является промежуточным звеном при переходе от графического изображения отношений между множествами к числовому равен­ству.

Дети уже знакомы со знаками плюс (+), минус (-), равня­ется (=), теперь их знакомят с моделью записи арифметического действия условными значками целое — круг, часть целого — полу­круг и учат составлять равенство.

В процессе обучения следует составлять и решать задачи на сложение и вычитание величин

. В качестве наглядного мате­риала используются шнуры, тесемка, ленты, мягкая проволока и другие предметы, подлежащие измерению, а также условные мерки разного размера и др.

Дети уже знакомы со способами и приемами измерения вели­чин (длина, масса) и умеют пользоваться такими правильными выражениями, как отрезок веревки, отрезок тесьмы

(но не кусок ве­ревки, тесьмы).

Приведем пример такой задачи. Вывешивается картина с изобра­жением куклы, в руках у которой корзина с выстиранным бельем. Перед куклой два колышка, между которыми надо натянуть веревку для развешивания на ней белья. На фланелеграфе изображены два колышка, между которыми следует натянуть веревку.

Ребенок должен вынуть из корзины веревку, чтобы натянуть ее между колышками, но она оказывается мала, и тогда он дол­жен взять другой отрезок верёвки и соединить ее с первой так, чтобы длина веревки была достаточной для натягивания между колышками.

Детям предлагают рассмотреть картину и составить по ней задачу. Для этого надо прежде всего измерить длину обоих от­резков веревки. Отрезки веревок измеряются: один отрезок ра­вен шести меркам, а другой — одной. Составляется задача: один отрезок веревки, взятый для того, чтобы натянуть ее между ко­лышками, оказался недостаточным, в нем было шесть мерок. Взя­ли другой отрезок, равный одной мерке, и соединили его с пер­вым отрезком. Сколько мерок в длине всей веревки? Воспитатель предлагает сделать запись, чтобы были видны известное и неиз­вестное числа. Дети формулируют действие и результат, дают ответ на вопрос задачи.

Воспитателю далее следует предложить подумать, нельзя ли по этой картине составить и другую задачу. Дети предлагают сначала измерить длину всей веревки и длину одного из от­резков веревки, чтобы можно было вычесть длину отрезка веревки от длины всей веревки и получить длину второго отрезка. Составля­ется новая задача на действие вычитания, в которой неизвестным числом становится длина второго отрезка

Следует отметить, что опыт, приобретенный детьми в процессе измерения величин, находит применение и при составлении задач. Приведем некоторые из них.

«Мама купила 1 м синей ленты и 2 м красной. Сколько всего метров ленты купила мама?»

«Мы ходили в магазин и купили 2 кг яблок и 1 кг слив. Сколько всего фруктов мы купили?»

«Мальчик сел в лодку и проплыл 6 м, а ширина реки всего 8 м. Сколько ему еще надо проплыть?»

«Шофер залил в бак машины 6 л бензина, а потом добавил еще 3 л. Сколько всего бензина шофер залил в бак?»

Итак, на третьем этапе дети должны научиться формулиро­вать арифметические действия (сложения, вычитания), различать их, составлять задачи на заданное арифметическое действие.

На четвертом этапе работы над задачами детей учат при­емам вычисления — присчитывание и отсчитывание единицы.

Если до сих пор вторым слагаемым или вычитаемым в решае­мых задачах было число 1, то теперь нужно показать, как следу­ет прибавлять или вычитать числа 2 и 3. Это позволит разнооб­разить числовые данные задачи и углубить понимание отношений между ними, предупредит автоматизм в ответах детей. Однако здесь нужно соблюдать осторожность и постепенность. Снача­ла дети учатся прибавлять путем присчитывания по единице и вычитать путем отсчитывания по единице число 2, а затем число 3.

Присчитывание

— это прием, когда к известному уже числу прибавляется второе известное слагаемое, которое разбивается на единицы и присчитывается последовательно по 1: 6 + 3=6+ 1 +1 +1 + 1=7+1 + 1=8+1=9.

Отсчитывание

— это прием, когда от известной уже суммы вычитается число (разбитое на единицы) последовательно по 1: 8-3 = 8 — 1 — 1-1 = 7 — 1 – 1 = 6 – 1 = 5.

Внимание детей должно быть обращено на то, что нет необходимости при сложении пересчитывать по единице первое число, оно уже известно, а второе число (второе слагаемое) следует присчитывать по единице (термины «сумма», «слагаемое», «вычитаемое», «уменьшаемое», «разность» де­тям подготовительной к школе группы не сообщаются); надо вспомнить лишь количественный состав этого числа из единиц. Этот процесс напоминает детям то, что они делали, когда считали дальше от любого числа до, указанного им числа. При вычитании же чисел 2 или 3, вспом­нив количественный состав числа из единиц, надо вычитать это число из уменьшаемого по единице. Это напоминает детям упражнения в обратном счете в пределах указанного им отрезка чисел.

Итак,

изучая действия сложения и вычитания при решении арифметических задач, можно ограничиться этими простейшими случаями прибавления (вычитания) чисел 2 и 3. Нет необходимости увеличивать второе слагаемое или вычитаемое число, т. к. это потребовало бы уже иных приемов вычисления. Задача детско­го сада состоит в том, чтобы подвести детей к пониманию ариф­метической задачи и к пониманию отношений между компонентами арифметических действий сложения и вычитания.

На завершающем пятом этапе работы над задачами можно предло­жить дошкольникам составлять задачи без наглядного материала (устные задачи).

В них дети самостоятельно избирают тему, сю­жет задачи и действие, с помощью которого она должна быть решена. Воспитатель регулирует лишь второе слагаемое или вычи­таемое, напоминая детям, что числа свыше трех они еще прибав­лять и отнимать не научились. (Здесь могут быть и исключения.)

При введении устных задач важно следить за тем, чтобы они не были шаблонными. В условии должны быть отражены жизнен­ные связи, бытовые и игровые ситуации. Надо приучать детей рассуждать, обосновывать свой ответ, в отдельных случаях ис­пользовать для этого наглядный материал.

После усвоения детьми решения устных задач первого и второ­го вида можно перейти к решению задач на увеличение и умень­шение числа на несколько единиц.

Исследования и практика показывают, что дошкольникам до­ступно решение некоторых видов косвенных задач.

Их можно пред­лагать детям, будучи уверенными, что обязательный программный материал усвоен ими хорошо. И лишь при необходимости усложнить работу можно ввести такие задачи. Поскольку в косвенных зада­чах логика арифметического действия противоречит действию по содержанию задачи, они дают большой простор для рассуждений, доказательств, приучают детей логически мыслить.

Приведем примеры таких задач:

«Из графина вылили пять стаканов воды, но в нем остался один стакан воды. Сколько воды было в графине?»

«Леша сделал елочные игрушки. Три из них он повесил на елку, а две оставил. Сколько игрушек сделал Леша?»

«У Лены было семь конфет. Она угостила ребят, и у нее осталось четыре конфеты. Сколько конфет она отдала ребятам?»

«На дереве сидели птички. Когда прилетели еще четыре, их стало восемь. Сколько птиц сидело на дереве сначала?»

Предлагать подобные задачи для решения лучше всего в виде сюрприза: «Кто сообразит, как решать задачу, которую я вам сейчас задам?» Надо отметить, что эти задачи вызывают большой интерес у детей.

Итак, работа над задачами не только обогащает детей но­выми знаниями, но и дает богатый материал для умственного раз­вития.

Получить текст

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]